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High-resolution numerical simulations
of electrophoresis using the Fourier
pseudo-spectral method

We present the formulation, implementation, and performance evaluation of the Fourier
pseudo-spectral method for performing fast and accurate simulations of electrophoresis.
We demonstrate the applicability of this method for simulating a wide variety of elec-
trophoretic processes such as capillary zone electrophoresis, transient-isotachophoresis,
field amplified sample stacking, and oscillating electrolytes. Through these simulations,
we show that the Fourier pseudo-spectral method yields accurate and stable solutions
on coarser computational grids compared with other nondissipative spatial discretization
schemes. Moreover, due to the use of coarser grids, the Fourier pseudo-spectral method
requires lower computational time to achieve the same degree of accuracy.We have demon-
strated the application of the Fourier pseudo-spectral method for simulating realistic
electrophoresis problems with current densities as high as 5000 A/m2 with over tenfold
speed-up compared to the commonly used second-order central difference scheme, to
achieve a given degree of accuracy. The Fourier pseudo-spectral method is also suitable
for simulating electrophoretic processes involving a large number of concentration gradi-
ents, which render the adaptive grid-refinement techniques ineffective.We have integrated
the numerical scheme in a new electrophoresis simulator named SPYCE, which we offer
to the community as open-source code.
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1 Introduction

Numerical simulation has become an indispensable tool
for understanding the fundamental behaviour and optimi-
sation of various electrophoresis techniques such as CZE
[1], isotachophoresis (ITP) [2], field-amplified sample stack-
ing (FASS) [3,4], and IEF [5]. Early work on simulations of
electrophoresis, beginning with the work of Bier et al. [6],
focused on understanding the dynamics of electrophoretic
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techniques and the role of various physical and chemical pro-
cesses in separation and preconcentration of ionic species.
With ever-increasing computational power and availability
of free simulations tools, such as SIMUL [7] and SPRESSO
[8], electrophoresis techniques can now be simulated on per-
sonal computers by anyone having a basic understanding of
electrophoresis. Therefore, numerical simulations have now
found applications in: (i) exploring optimal process param-
eters for improved separation and preconcentration of ana-
lytes, (ii) development of new electrophoretic assays, (iii) and
teaching [9]. Recent advances in the understanding of elec-
trophoresis phenomena, for example, the discovery of oscil-
lating electrolytes [10,11] and development of advanced elec-
trophoresis assays, such as those based on bidirectional ITP
[12–14], have been made possible primarily by numerical
simulations.

Numerical simulations of electrophoresis are based on
solving the coupled transport equations for ionic species
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including the effects of electromigration, advection due to
bulk flow, diffusion, and chemical equilibria. Beginning with
the early work of Bier et al. [6] and Saville and Palusinski
[15] on the modelling of electrophoretic techniques, various
improvements to the mathematical model of electrophore-
sis have been made. These include, modelling of protein
mobility [16], ionic-strength dependence on electrophoretic
mobility [17], Taylor-Aris dispersion [8,18], and axially
varying channel cross-section [18]. Most of the modern nu-
merical simulators for electrophoresis, such as SIMUL [7],
SPRESSO [8, 18], and GENTRANS [19], are based on the one-
dimensional (1D) or quasi-1D formulation of the governing
equations proposed by Saville and Palusinski [15] with some
or all of the aforementioned improvements in the mathe-
matical model. A review and comparison of the capabilities
of these simulators have been presented by Thormann et
al. [9,20]. In contrast to the abovementioned simulators,
which can simulate nonlinear electrophoresis systems,
electrophoresis techniques, such as zone electrophoresis and
electrokinetic chromatography, can also be simulated using
the linearised species transport equations. This simulation
approach, based on the linear theory of electromigration, has
been implemented in the PeakMaster simulator [21]. Besides
dedicated 1D simulators for electrophoresis, multiphysics
simulation packages, such as OpenFOAM [22] and COMSOL
[23, 24], enable both 1D and multidimensional simulations
of a variety of nonlinear electrophoresis techniques.

While the available simulators and published studies on
electrophoresis simulations are based on similar mathemat-
ical models, they differ primarily in the choice of the numer-
ical method, particularly the spatial discretization scheme.
The spatial discretization schemes for numerically solving
the transport equations for electrophoresis can be broadly
classified into dissipative and nondissipative schemes. The
dissipative schemes, such as upwind scheme [25], flux-
corrected transport scheme [26], and symmetric limited
positive scheme (SLIP) [18] incorporate artificial numerical
diffusion to ensure stability and prevent spurious oscilla-
tions in the solution. The dissipative schemes yield stable,
nonoscillatory solutions even on coarser computational grids
but at the expense of lower accuracy. Such schemes are per-
fectly suited for performing rough, exploratory simulations
for the design of electrophoretic assays. The flux corrected
transport scheme and the SLIP scheme have been integrated
in GENTRANS [26] and SPRESSO [18] simulators, respec-
tively. On the other hand, the nondissipative schemes, such
as the second-order central difference [27] and sixth-order
compact schemes [8], offer significantly higher accuracy due
to the absence of numerical diffusion. However, these spatial
discretization schemes require a relatively finer grid to
ensure stable nonoscillatory solutions. The most commonly
used nondissipative scheme is the second-order central
difference scheme which has been implemented in SIMUL
and GENTRANS simulators. The SPRESSO simulator al-
lows a choice between second-order central difference and
sixth-order compact schemes, besides the dissipative SLIP
scheme.

One way to address the drawbacks of low accuracy of
the dissipative schemes and the requirement of high grid
density of the nondissipative schemes is to use adaptive grid
refinement. For example, Bercovici et al. [8] demonstrated the
use of adaptive grid refinement to perform high-resolution
simulations of electrophoresis using the sixth-order compact
scheme, with lesser number of grid points and correspond-
ingly lower computational time. On the other hand, Bahga et
al. [18] used the adaptive grid refinement for improving the
accuracy of the unconditionally stable SLIP scheme, particu-
larly in the regions with large concentration gradients. These
adaptive grid-refinement schemes have been integrated in
the open-source SPRESSO simulator. The adaptive grid
refinement techniques, however, require a careful choice of
grid-refinement parameters to be effective in stabilising the
nondissipative schemes or improve the accuracy of dissipa-
tive schemes. An improper choice of grid-refinement param-
eters can lead to excessive computational time in dynamically
adapting the grid, thereby negating the benefit of adaptive
grid refinement. This is particularly true if a small number
of grid points are used while simulating electrophoretic
processes with sharp gradients or for systems, such as os-
cillating electrolytes, where a large number of concentration
gradients are distributed throughout the computational
domain.

An alternate approach of achieving high accuracy with
relatively low grid density is to use pseudo-spectral methods
[28,29]. Unlike, the finite difference and the finite-volume
methods that are based on spatially local approximations
of a function with low-order polynomials, the pseudo-
spectral methods are based on global representations of
a function such as the Fourier series or high-order poly-
nomials [28–30]. Pseudo-spectral methods offer accuracy
unmatched by other local methods and permit use of a
coarser grid. Pseudo-spectral methods are exceptionally
successful for simulating naturally periodic problems in-
volving convective and wave phenomena. Moreover, physical
problems that are not naturally periodic, such as initial-
value problems, can also be solved on a periodic domain.
For these reasons, pseudo-spectral methods have found
applications in various disciplines including meteorology
[31], geophysics [32], fluid dynamics [33], and acoustics
[34]. All electrophoresis techniques involve wave-type phe-
nomena and can be formulated as initial value problems
[35–37]. Therefore, pseudo-spectral methods are perfectly
suited for simulating electrophoresis techniques on coarser
computational grids with high accuracy. Despite these
advantages, till date application of pseudo-spectral meth-
ods for simulating electrophoretic processes has not been
demonstrated.

In the current work, we demonstrate the application
of a particular type of pseudo-spectral method called the
Fourier pseudo-spectral method for performing fast and
accurate simulations of a variety of electrophoretic pro-
cesses including CZE, oscillating electrolytes, FASS, and
transient-ITP (tITP) [14]. In particular, we show that the
Fourier pseudo-spectral method yields accurate numerical
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solutions of electrophoresis problems for realistic current
densities, with a lesser number of grid points and lower
computational time. We benchmark our simulations with
the experimentally validated SPRESSO solver that uses the
sixth-order compact scheme. To highlight the advantages
of the Fourier pseudo-spectral method, we compare the
results from the pseudo-spectral method with those using
the nondissipative, second-order central difference scheme.
The numerical scheme presented in this article allows for
electrophoresis simulations only on a periodic domain. We
show that a variety of electrophoresis techniques, except
ITP, moving boundary electrophoresis and IEF, can be
simulated in a periodic framework. We note that nonperi-
odic problems can also be simulated using other types of
pseudo-spectral methods, and we will report the application
of such methods to electrophoresis in the near future. For
the benefit of electrophoresis community, we offer our
pseudo-spectral method-based electrophoresis simulator
as an open-source code, written in Python programming
language. The simulator is named SPYCE (Pseudo-spectral
Python Code for Electrophoresis) and is available for free
download at http://web.iitd.ac.in/∼bahga/SPYCE.html.

2 Material and methods

2.1 Mathematical model

We consider a 1D mathematical model for transport of ionic
species in a capillary or microchannel due to advection, elec-
tromigration, and diffusion. The governing equations de-
scribing electrophoretic transport of weak electrolytes have
been discussed in detail by Hruška et al. [7] and Bercovici
et al. [8], and are briefly reviewed here. The cross-sectional
area-averaged, total (analytical) concentration of species fam-
ily i, denoted by ci, varies along the axial coordinate x and
time t as

∂ci
∂t

+ ∂

∂x
(uci + μiEci ) = ∂2

∂x2
(Dici ) , i = 1, . . . ,m. (1)

Here u denotes the axially-uniform mean velocity of the
bulk fluid, μi the effective mobility, Di the effective diffusiv-
ity, and E the local electric field. The total concentration of
species family i is the sum of concentrations ci,z of various
ionisation states (denoted by the valence statez),

ci =
pi∑

zi=ni

ci,z. (2)

Here ni and pi denote the minimum and maximum va-
lence states for species familyi. For example, for arginine,
the valance states are z = −1, 0, 1, 2and hence ni = −1 and
pi = 2. In Eq.(1), the effective mobility μi and effective dif-
fusivity Di are defined as the weighted mean of mobilities

and diffusivities of various ionisation states z of i − th species
with ionisation fractions gi,z as the weights,

μi =
pi∑

z=ni

μi,zgi,z, Di =
pi∑

z=ni

Di,zgi,z, gi,z = ci,z
ci

. (3)

In the current work, we ignore the effects of ionic
strength of electrophoretic mobility, which can be
incorporated in a straightforward manner, as shown by
Bahga et al. [17].

In typical electrophoresis experiments, the species trans-
port occurs at timescales that are significantly longer com-
pared with those of acid-base dissociation reactions [15].
Therefore, knowing the total concentrations ci of all the
species, the concentrations of various ionisation states ci,z
can be obtained by assuming local chemical equilibrium.
The chemical equilibrium calculations have been described
in detail by Hruška et al. [7] and Bercovici et al. [8]. Here,
we follow the same approach to obtain concentrations ci,z
and concentrations of hydronium ioncH and hydroxyl ioncOH ,
knowing the total concentrations ci of all the species families.
The chemical equilibrium calculations rely on the relation
between concentrations of two consecutive ionisation states
with the equilibrium constants Ki,z, as ci,zcH/ci,z+1 = Ki,zand
the electroneutrality condition given by

cH − cOH +
m∑
i=1

pi∑
z=ni

zci,z = 0. (4)

In addition, the concentrations of hydronium and hy-
droxyl ions are related by cHcOH = Kw, where Kw is the ionic
product of water.

The species transport equations (Eq. (1)) for various
species i = 1, . . . ,m are coupled through the local electric
field E,which is governed by the conservation of current. For
a constant current density χ, the local electric field is given
by

E = 1
σ

(
χ + ∂S

∂x

)
, (5)

where σ denotes the local electrical conductivity and ∂S/∂x
denotes the diffusive current density. These quantities are
given by

σ = F

⎛
⎝μHcH − μOHcOH +

m∑
i=1

pi∑
z=ni

zμi,zci,z

⎞
⎠ (6)

and

S = F

⎛
⎝DHcH − DOHcOH +

m∑
i=1

pi∑
z=ni

zDi,zci,z

⎞
⎠ , (7)

where F is the Faraday’s constant. In Eqs. (6) and (7), the
subscripts H and OH denote the physical quantities of hy-
dronium and hydroxyl ions, respectively. Substituting the ex-
pression for local electric field E given by Eq. (5) in Eq. (1),
we arrive at the coupled set ofm partial differential equations
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which we solve numerically,

∂ci
∂t

+ ∂

∂x

(
uci + μiχ

σ
ci
)

+ ∂

∂x

(
μici
σ

∂S
∂x

)
= ∂2

∂x2
(Dici ) ,

i = 1, . . . ,m. (8)

2.2 Fourier pseudo-spectral method

In the Fourier pseudo-spectral method, hereafter referred to
as the FPSmethod, we numerically solve the set of governing
equations, Eq. (8), in Fourier (or wavenumber) space rather
than in physical space [28,29]. The transformation from the
physical space to the Fourier space is given by the Fourier
Transform. The Fourier transform of any spatially varying
physical quantity f (x, t ), defined on a real line, such as con-
centration and conductivity, is defined as

f̂ (k, t ) �= F {
f (x, t )

} =
∫ ∞

−∞
f (x, t )e− jkxdx, (9)

where k is the wavenumber and j = √−1. The conversion
from the Fourier space to physical space is given by the in-
verse Fourier transform,

f (x, t ) �= F−1
{
f̂ (k, t )

}
= 1

2π

∫ ∞

−∞
f̂ (k, t )e jkxdk, (10)

Next, we apply the Fourier transform to both sides of the
governing equations, Eq. (8), to get

d̂ci
dt

+ jkF
(
uci + μiχ

σ
ci
)

+ jkF
(μici

σ
F−1 (

jkF (S)))

= −k2F (Dici ) , i = 1, . . . ,m. (11)

Here, we have used the differentiation property of
the Fourier transform, that is,F (df /dx) = jkF ( f )and
F (d2 f /dx2) = −k2F ( f ), to express the transform of deriva-
tive terms. Note that, the diffusion current term in Eq. (11)
results from the fact that ∂S/∂x = F−1( jkF (S)). The differ-
entiation property of Fourier transform converts the coupled
set of partial differential equations in the physical space,
Eq. (8), to a set of nonlinear ordinary differential equations
(ODEs), Eq. (11), in the Fourier space. The resulting ODEs
in time, Eq. (11), are solved numerically to obtain the Fourier
coefficients ĉi(k, t ). Thereafter, the inverse Fourier transform
given by Eq. (10) is used to obtain the concentrations in the
physical space.

In practice, for computer implementation of the above-
mentioned procedure one works with a finite periodic do-
main and use the Discrete Fourier Transform (DFT) instead
of the continuous Fourier transform. The DFT is computed
using the computationally-efficient Fast Fourier Transform
(FFT) algorithm. For further details on the implementation
of the FPS method, the readers are referred to excellent texts
by Trefethen [28] and Boyd [29] and the open-source code of
SPYCE.Here, we briefly outline the numerical procedure.We
begin by discretizing the computational domain intoN grid
points, xk = k�x where k = 0, 1, . . . ,N − 1, �x = L/N, and
L is the length of the domain in physical units.We assume the

problem to be periodic, that is, the value of any spatially vary-
ing physical quantity at x0 is equal to that at xN = N�x = L.
The initial conditions in physical space are transformed to the
Fourier space using the DFT, and the resulting ODEs, similar
to Eq. (11)) are solved numerically to estimate the coefficients
of DFT at the next time-step. In the current work, we use the
fourth-order Runge–Kutta–Fehlberg (RKF45) adaptive time-
stepping scheme for numerically solving the resulting ODEs.
After each time-step, the concentrations in the physical space
are computed using the inverse DFT, and these concentra-
tions are used to perform chemical equilibrium calculations
to determine the local pH = −log10(cH [M]), effective mobil-
ities and diffusivities using Eq.(3), and conductivity using
Eq. (6). Thereafter, the same procedure is repeated for subse-
quent time-steps. We note that the computation of nonlinear
terms in Eq. (11) leads to aliasing errors and associated
loss in accuracy [29]. To avoid aliasing errors, we use the
Fourier smoothing method of Hou and Li [38] wherein we
multiply the DFT coefficients of concentrations at the end of
every time-step with a weighting function to attenuate high
wavenumbers. Hou and Li [38] showed the effectiveness of
such low-pass filtering on capturing nonlinear diffusive wave
propagation (Burgers equation), which is also the nature of
wave propagation phenomena in electrophoresis [36].

The FPSmethod described above works for only periodic
problems. Although the requirement of periodicity appears
to be limiting, as we shall show later in Section 3, a variety
of electrophoresis techniques can be simulated on a periodic
grid. This is because the conditions at the left and the right
boundaries in many electrophoresis techniques are identical
and do not vary with time. Exceptions to this are electrophore-
sis techniques, such as ITP, moving boundary electrophore-
sis, and IEF, where the ends of the channel are filled with dif-
ferent electrolytes. Such nonperiodic problems can be solved
numerically using other types of pseudo-spectral methods,
such as the Chebyshev pseudo-spectral method. We will re-
port the application of such methods for performing numer-
ical simulations of nonperiodic problems in a future article.

We implemented the numerical algorithm discussed
above in Python 3.0 programming language using the
NumPy library. To demonstrate the accuracy and compu-
tation time of simulations based on FPS method, we also
implemented the second-order central difference scheme,
hereafter referred as CD2 scheme, in a similar Python
code. The chemical equilibrium calculations were verified
separately with the SPRESSO simulator. All simulations
were performed on Intel i7 1.8 GHz, 16 GB RAM personal
computer with Ubuntu 18.04 operating system.

3 Results and discussion

In this section, we present simulations of various elec-
trophoretic processes, such as CZE, t-ITP, and oscillating
electrolytes, using the FPS method and their comparison
with the simulations using the CD2 scheme. In addition,
we present verification of our numerical implementation
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of the FPS method in the SPYCE simulator with the sixth-
order compact scheme implemented in SPRESSO. Besides
these simulations, in the Supporting Information, we show
the applicability of our numerical method for simulating
FASS. We note that a detailed comparison of various spa-
tial discretization schemes for simulating electrophoresis,
including the upwind, CD2, sixth-order compact, and SLIP
schemes, has been provided elsewhere [8,18]. Moreover, the
advantages of the FPS method over other finite difference
schemes have been well documented in the literature [28,29].
Our focus in this section is to demonstrate the ability of the
FPS method to simulate a wide variety of electrophoretic
processes. To highlight the accuracy and speed-up offered
by the pseudo-spectral method, throughout we compare
its performance with the CD2 scheme, which is the most
popular numerical scheme for electrophoresis.

3.1 Capillary zone electrophoresis (CZE)

We begin by presenting simulations of a benchmark prob-
lem of CZE, proposed originally by Ermakov et al. [39]
and subsequently adopted in various numerical studies of
electrophoresis [8,18,26]. Simulations were performed for
a 200 mm long, 50 μm diameter circular capillary filled
with a BGE consisting of 12 mM tris (pKa = 8.076 and μ =
29.5× 10−9 m2/Vs) and 20 mM acetic acid (pKa = 4.756 and
μ = −42.4× 10−9 m2/Vs). The analytes, aniline (pKa = 4.8
and μ = 32.5× 10−9 m2/Vs) and pyridine (pKa = 5.16 and
μ = 30× 10−9 m2/Vs), were initially present in the form of
Gaussian-shaped zoneswith a variance of 12.5mm2, centered
at a distance of 30 mm from the left end of the capillary. We
performed two sets of simulations corresponding to both an-
alytes having initial concentrations of 10 μM and 1 mM. All
simulations were performed at a constant current of 5 μA
(current density of 2547 A/m2). The first case with 10 μM ini-
tial concentration of analytes involves linear electromigration
of analyte peaks and allows comparison of the numerical so-
lution with the analytical solution. Whereas, the second case
with 1 mM initial concentration of analytes involves strong
electromigration dispersion of analyte peaks and was chosen
to test the ability of the FPS method to resolve sharp concen-
tration gradients. For both these cases, we compared the re-
sults of simulations using the FPSmethod, CD2 scheme, and
the sixth-order compact scheme with an adaptive grid (1000
grid points) implemented in SPRESSO. In addition to these
simulations, in the Supporting Information, we present sim-
ulations of electrophoretic separation of the same analytes
with sample stacking using FASS.

Figures 1A and B show the simulated concentrations of
fullyseparated analytes at t = 200 s, for the cases with initial
analyte concentrations of 10 μM and 1 mM, respectively. To
simulate the linear case with 10 μM initial analyte concen-
trations, 1024 grid points were used, whereas for the nonlin-
ear case with 1 mM initial analyte concentrations 4096 grid
points were used to resolve the sharp concentration gradi-
ents. At low analyte concentrations, shown in Fig. 1A, the

(A)

(B)

Figure 1. Simulations of electromigration dispersion in CZE us-

ing the FPS method and the CD2 scheme, and their verifica-

tion with SPRESSO simulations based on sixth-order compact

scheme with adaptive grid refinement. (A) For low initial concen-

trations of analytes (10 μM), FPS method and CD2 method yield

qualitatively similar peak concentrations. (B) At higher initial con-

centrations of analytes (1 mM), electromigration dispersion is ob-

served, which is accompanied by sharp concentration gradients.

The CD2 scheme fails to resolve the sharp gradients and results

in spurious oscillations, as shown in the inset. The FPS method

yields a stable nonoscillatory solution for the same number of

grid points (N = 4096). For both the cases, the concentration pro-

files simulated using the FPS method agree with those predicted

by the compact scheme implemented in SPRESSO.

FPS method and the CD2 scheme yield qualitatively simi-
lar nonoscillatory solutions. However, for higher analyte con-
centrations, shown in Fig. 1B, where electromigration disper-
sion is observed the CD2 scheme results in spurious oscilla-
tions. In contrast, for the same number of grid points, the
FPS method is able to resolve the sharp concentration gradi-
ents and yields a nonoscillatory solution. For both the cases,
the concentration profiles simulated using the FPS method
agree with those predicted by the compact scheme imple-
mented in SPRESSO, thereby verifying the implementation
of the pseudo-spectral method in our SPYCE simulator.

To compare the accuracy of the FPSmethod and the CD2
scheme, in Fig. 2 we compare the simulated velocity of pyri-
dine peak for the linear case (with 10 μM initial analyte con-
centrations) with the theoretical peak migration speed, for
varying number of grid pointsN.The theoretical peak migra-
tion speed is given by μE, whereE is the electric field in the
channel which remains unperturbed due to the migration
of low-concentration analytes. As shown in Fig. 2, the FPS
method predicts the peak velocity with an error less than 1%
with only N =128 grid points, whereas the CD2 scheme re-
quires at least N =512 grid points to achieve comparable ac-
curacy. In Fig. 2, we also present the computational time for
simulating the case with 10μM initial analyte concentrations

© 2020 Wiley-VCH GmbH www.electrophoresis-journal.com
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Figure 2. Comparison of the accuracy and computational time

of FPS method and CD2 scheme for simulating the linear CZE

case with 10 μM initial concentrations of analytes. Shown here

is the comparison of the simulated velocity of the pyridine peak

with the theoretical value. The FPS method yields higher accu-

racy than the CD2 method for a smaller number of grid points.

The FPS method requires about two times longer computational

time than the CD2 scheme for the same number of grid points.

However, for the same level of accuracy, the FPS method takes

lesser computational time that the CD2 scheme.

for varying number of grid pointsN. The computational time
taken by the FPS method and the CD2 scheme show simi-
lar scaling with N. Figure 2 shows that, despite the compu-
tational efficiency of FFT algorithm, the FPS method takes
about two times longer to simulate the linear CZE problem
than the CD2 scheme, for the same number of grid points.
However, the higher computational cost of the FPS method
is offset by its higher accuracy. For example, the central differ-
ence scheme requires at least N =512 grid points and com-
putational time of 1 s (or higher) to achieve an error less
than 1% in the peak velocity. In contrast, the pseudo-spectral
method yields same accuracy for N =128 grid points (or
higher) for which it requires only 0.1 s of computational time,
which is over 10-fold speed-up over the central difference
scheme. Therefore, the FPS method yields higher accuracy
for a coarser computational grid and correspondingly smaller
computational time. Although the computational time re-
quired for the linear CZE problem is small, simulations of
nonlinear electrophoretic processes with sharp gradients re-
quire a large number of grid points and relatively longer com-
putational times. The requirement of a coarse grid by the FPS
method and corresponding reduction in computational time
is particularly beneficial for such nonlinear simulations.

3.2 Transient isotachophoresis (t-ITP)

Next, we consider an example of preconcentration and
separation of two analytes using t-ITP. In the configuration

of t-ITP that we consider, the analytes are initially injected
between the leading electrolyte (LE) and trailing electrolyte
(TE) zones. In addition, LE is injected behind the TE zone to
affect analyte separation [14]. Upon application of the electric
field, the analytes focus and preconcentrate between the LE
and TE zones. At a later time, the LE ions behind the TE
zone overtake the TE ions and disrupt ITP focusing, thereby
initiating electrophoretic separation. This problem was
chosen to test whether the FPS method can resolve the sharp
concentration gradients in t-ITP. To this end, we performed
simulations using the FPS method and the CD2 scheme in
a 25 mm long computational domain discretized with 2048
grid points. The LE ion was 50 mM sodium (pKa = 13.7 and
μ = 51.9× 10−9 m2/Vs), TE ion was β-alanine (pKa = 3.3
and μ = 36.0× 10−9 m2/Vs), and the background counter-
ion was 100mM acetic acid. The same composition of LE was
used for creating a zone of LE behind the TE zone to affect
t-ITP separation. The analytes, pyridine (S1) and aniline (S2),
were injected between the LE and the TE zones in the form of
Gaussian peaks with peak concentrations of 10 mM. These
simulations were performed for a constant current density of
1528 A/m2, corresponding to a current of approximately 3μA
through a 50 μm diameter circular capillary. Although the
accuracy of FPS method is higher than the compact scheme,
to verify our numerical implementation, we also performed
simulations using the sixth-order compact schemewith adap-
tive grid implemented in SPRESSO (with 1000 grid points).

The initial concentration distribution of all the species is
shown in Fig. 3A. Figure 3B and C shows the concentration
profiles of various species during the preconcentration step
(t = 2 s) and separation step (t = 150 s), respectively. The ITP
preconcentration step is characterized by sharp concentration
gradients, while the gradients during the separation step are
relatively small. The FPS method accurately resolves these
concentration gradients and the simulated concentration pro-
files agree with those predicted by the compact scheme of
SPRESSO. On the other hand, the CD2 scheme exhibits
nonphysical oscillations during the preconcentration step, as
shown in Fig. 3B. However, these spurious oscillations van-
ish during the separation step, which is characterized by rel-
atively low concentration gradients, as shown in Fig. 3C.

3.3 Oscillating electrolytes

Lastly, we present a simulation of an oscillating electrolyte
system [10,11] consisting of sebacic acid and imidazole. As
shown by Hruška et al. [10], for a particular range of concen-
trations of sebacic acid and imidazole, small disturbances in
initially uniform concentration field amplify under the effect
of electric field and result in propagating, oscillatorymodes in
concentrations. This problem is naturally periodic and can be
solved using a periodic computational domain that is much
smaller than the actual channel. For these simulations, we
took a 25 mm long computational domain discretized with
2048 grid points. The initial state has 0.21 mM sebacic acid
(pKa,−2 = 5.38, pKa,−1 = 4.53, μ−2 = −44.9× 10−9 m2/Vs,
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Figure 3. Simulations of t-ITP using the FPS method and

CD2 scheme showing coupled ITP preconcentration and elec-

trophoretic separation of two analytes. For verification, also

shown are the concentration profiles simulated using SPRESSO

employing the sixth-order compact scheme with adaptive

grid refinement. The FPS method yields stable solution for both

preconcentration (B) and separation (C) steps, and the simulation

concentration profiles agree with those predicted by SPRESSO.

However, owing to sharp concentration gradients during the ITP

preconcentration step (B), the CD2 scheme results in spurious

oscillations for the same number of grid points as that for FPS

method (N = 2048). The simulations using both SPYCE and

SPRESSO took about 5 min to run.

and μ−1 = −20.7× 10−9 m2/Vs) and 0.313 mM imidazole
(pKa = 7.15 and μ = 52.0× 10−9 m2/Vs) distributed uni-
formly along the channel axis. To this uniform base-state, we
added small random perturbations to the imidazole concen-
tration, modelled by Gaussian white noise with zero mean
and standard deviation of 10−5 times the base-state concentra-
tion of imidazole. The same random perturbation was used
for simulations with FPS and CD2 methods to draw a com-
parison. A constant current density of 100 A/m2 was applied
through the channel with electric field pointing towards the
left.

Figure 4 shows the spatiotemporal evolution of os-
cillations in imidazole concentration, simulated using the
FPS method and the CD2 scheme. The initial random per-

(A)

(A)

Figure 4. Spatiotemporal evolution of oscillations in imidazole

concentration in an oscillatory electrolyte system having a base-

state of 0.21 mM sebacic acid and 0.313 mM imidazole, as pre-

dicted by FPS and CD2 methods. The concentration profiles are

shown at t = 0, 30, 40, and 50 s with a vertical offset of 0.2 mM

between each plot for illustration. (B) The concentration waves

predicted by the CD2 scheme appear to be diffused in compari-

son with those predicted by the FPS method.

turbations in the concentration field of imidazole amplify
exponentially and give rise to deterministic oscillations in
the concentrations of both species; here, we present concen-
tration profiles of imidazole only. Over time, the growth of
oscillatory modes saturates, and thereafter the individual
waves interact with each other without further increase in am-
plitude. In this case, both the numerical schemes yield stable
solution, and these are in qualitative agreement with a sim-
ilar simulation presented by Hruška et al. [10]. As shown in
Fig. 4B, compared with the results from the FPS method, the
simulations using the CD2 scheme show relatively diffused
concentration waves. This is because the pseudo-spectral
method is able to resolve a larger range of wavenumbers
than other finite difference schemes for the same computa-
tional grid. As shown previously by Gupta and Bahga [11], the
growth rates of oscillatory modes are affected by the relative
positions of peaks of imidazole and sebacic acid, which them-
selves depend on the wave propagation velocities. Hence, the
FPS method that captures wave propagation more efficiently
(higher accuracy for coarser grids) is better suited for this
problem.

Furthermore, we note that in this simulation, the
concentration gradients are distributed throughout the
computational domain. For such problems, the use of
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adaptive-grid refinement does not offer significant benefit in
improving the simulation accuracy as high grid density is re-
quired throughout the domain. The adaptive-grid refinement
methods are helpful only for problems where grid points
from low-gradient regions can bemoved to a few regions with
high-concentration gradients. The FPS method is perfectly
suited for such problems as it provides high accuracy even
on a uniform coarse grid.

4 Concluding remarks

We have demonstrated the application of the Fourier
pseudo-spectral method for simulating a wide variety of
electrophoretic processes including CZE, t-ITP, oscillating
electrolytes, and FASS.We have implemented this numerical
scheme in a new electrophoresis simulator, named SPYCE,
and verified it with available electrophoresis simulators.
Through various examples, we have demonstrated that the
Fourier pseudo-spectral method yields high accuracy on
coarser computational grids and correspondingly lower
computational time to achieve the same level of accuracy.
For realistic electrophoresis problems with current den-
sities as high as 5000 A/m2, the Fourier spectral method
offers over10-fold speed-up compared with the commonly
used second-order central difference scheme. Moreover, for
simulation of nonlinear electrophoretic processes involving
sharp concentration gradients, the second-order central
difference scheme results in spurious oscillations, while the
pseudo-spectral method is able to resolve steep gradients and
yields stable nonoscillatory solutions.

We have shown that the Fourier pseudo-spectral method
is an excellent alternative to other dissipative and nondis-
sipative spatial discretization schemes for simulating elec-
trophoresis which suffer from low-accuracy and less stability,
respectively. The Fourier pseudo-spectral method presented
in this work is applicable only for electrophoresis problems
that can be simulated in a periodic framework, wherein the
initial electrolyte composition at the both ends of the compu-
tational domain must be identical. Although we have shown
that a wide range of electrophoresis problems can be solved in
a periodic framework, a few electrophoretic techniques, such
as ITP, moving boundary electrophoresis, and IEF, cannot
be simulated on a periodic grid. Such nonperiodic prob-
lems can be solved using polynomial based pseudo-spectral
methods such as the Chebyshev pseudo-spectral method. We
will report the application of such methods for simulating
nonperiodic electrophoresis problems in the near future.
Nevertheless, as shown in this article, for a wide range
of electrophoretic processes, the Fourier pseudo-spectral
method offers significant advantages over other numerical
schemes. We also note that the Fourier spectral method
can offer even greater benefits in terms of computational
speed for high-resolution electrophoresis simulations in two-
and three dimensions. With freely available FFT libraries
for various programming languages and the open-source
code of SPYCE, the Fourier pseudo-spectral method can be

easily implemented in existing electrophoresis simulators
for performing fast and high-resolution simulations.
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